АНАЛИЗ КИНЕМАТИЧЕСКОЙ СТРУКТУРЫ ТЕЧЕНИЯ В ОКРЕСТНОСТИ ПРОНИЦАЕМОГО УГЛА ДЛЯ КАНАЛОВ КВАДРАТНОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

Л. В. Китаева, Ф. Ф. Спиридонов

Бийский технологический институт АлтГТУ, г. Бийск.

Аннотация. Рассматривается возможность практического применения решения дифференциальных уравнений методом разделения переменных для задач гидродинамики. В случае предельно низких и предельно высоких значений характерного числа Рейнольдса сформулирована автомодельная задача, получена определяющая система дифференциальных уравнений в частных производных. Найдены фундаментальные решения задачи, используя метод разделения переменных. При этом использовались соображения о симметрии решения по переменным.

Рассматриваются течения в каналах, образующая которых является прямой линией, а поперечное сечение представляет собой квадрат со стороной *a* (рисунок 1). Течения образованы вдувом со скоростью $q_+ = const$ через стенки каналов. Движение жидкости описывается следующей системой уравнений:

$$\begin{cases} div V = 0, \\ (\overline{V} \cdot \overline{\nabla}) \overline{V} = -\frac{1}{\rho} \overline{\nabla} P + v \Delta \overline{V}, \end{cases}$$
(1.1)

где \overline{V} - вектор скорости жидкости, P – давление, ρ -плотность, div, $\overline{\nabla}$ - дифференциальные операторы дивергенции и Гамильтона, $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial}{\partial z^2}$ - оператор Лапласа.

Приведем систему уравнений (1.1) к безразмерному виду, нормируя координаты на характерный для задачи размер *a*, а скорость и давление по соотношениям:

$$v = \frac{V}{q_+}, \ p = \frac{P}{\rho q_+^2}.$$

Приходим к следующей постановке задачи:

$$\begin{cases} div \ \overline{v} = 0, \\ (\overline{v}\overline{\nabla})\overline{v} = -\overline{\nabla}p + \frac{1}{Re}\Delta\overline{v}. \end{cases}$$
(1.2)

Здесь $Re = q_+ v / a$ - число Рейнольдса. В силу постоянства скорости вдува $q_+ \neq q_+(z)$ можем полагать, что компоненты вектора скорости по осям *x* и *y* зависят только от *x* и *y*:

$$u = u(x, y), v = v(x, y).$$

С учетом этого из первого уравнения системы (1.2) следует, что w = zW(x, y). Для распределения давления можно предложить зависимость

$$p = p_0 - \frac{1}{2}\rho C^2 z^2 + p_1(x, y)$$

где p_0 -значение давления в начале координат, а неизвестная константа C = C(Re). Тогда система (1.2) примет вид:

$$\begin{cases} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + W = 0, \\ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p_1}{\partial x} + \frac{1}{Re} \Delta u, \\ u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{\partial p_1}{\partial y} + \frac{1}{Re} \Delta v, \\ u \frac{\partial W}{\partial x} + v \frac{\partial W}{\partial y} = C^2 + \frac{1}{Re} \Delta w. \end{cases}$$
(1.3)

С целью анализа кинематической структуры течения рассмотрим его часть в окрестности угла А. Для этого введем новую систему координат, расположив угол в ее начале. Предполагается, что в окрестности угла есть бесконечно малое скругление.

Нетрудно видеть, что решение системы (1.3) зависит от величины числа Рейнольдса. Рассмотрим два возможных предельных случая: $Re \to 0$ и $Re \to \infty$.

Случай "исчезающей вязкости".

При $Re \to \infty$ в окрестности угла компоненты вектора скорости $u \sim v \sim 1$, $w \sim 0$. Тогда последнее уравнение системы (1.3) примет вид:

$$\frac{\partial W}{\partial x} + \frac{\partial W}{\partial y} \approx C^2$$

ИЛИ

$$W'_x + W'_y = C^2. (1.4)$$

Остальные уравнения (1.3) удовлетворяются тождественно.

Продифференцировав (1.4) по х и у, получим:

$$W_{xx}'' + W_{yx}'' = 0, (1.5)$$

$$W_{xy}'' + W_{yy}'' = 0. (1.6)$$

Учитывая, что $W''_{xy} = W''_{yx}$ в силу непрерывности функции W и ее производных, найдем разность (1.5) и (1.6):

$$W''_{xx} - W''_{w} = 0. (1.7)$$

В силу симметрии течения относительно диагонали АО, используя метод разделения переменных, будем искать решение в виде

$$W = X(x) \cdot Y(y). \tag{1.8}$$

С учетом (1.8) уравнение (1.7) примет вид:

$$X''Y - XY'' = 0$$

или

$$\frac{X''}{X} = \frac{Y''}{Y} = \lambda^2, \qquad (1.9)$$

где $\lambda^2 = const$.

Граничные условия следующие:

$$X(0) = 0, \ Y(0) = 0. \tag{1.10}$$

С возрастанием координат х и у возрастают функции Х(х) и Y(у).

Выражение (1.9) равносильно системе уравнений:

$$\begin{cases} X'' - \lambda^2 X = 0, \\ Y'' - \lambda^2 Y = 0. \end{cases}$$

В силу граничных уссловий (1.10) можно искать фундаментальное решение в виде

$$X = \alpha \sin(k\frac{\pi}{2}x), \ Y = \alpha \sin(k\frac{\pi}{2}y),$$

где *k* = 1,3,5,...

Пусть k = 1, тогда

$$W = X \cdot Y = \alpha^2 \sin\left(k\frac{\pi}{2}x\right) \sin\left(k\frac{\pi}{2}x\right). \tag{1.11}$$

Но известно [4], что при $Re \rightarrow \infty$

$$W = Cf(x, y), \qquad (1.12)$$

где $C = \frac{\pi}{2} \cdot \frac{\prod_0}{F_0}$ определяется геометрическими размерами канала и для канала с сечением в

форме квадрата со стороной a = 1 получим $C = \pi$.

Тогда из (1.11) и (1.12) следует, что

$$\alpha = \sqrt{C} = \sqrt{\pi} \; .$$

Зависимость

$$W = \pi \sin(\frac{\pi}{2}x)\sin(\frac{\pi}{2}y) \tag{1.13}$$

является приближенным решением уравнения (1.4) и точным решением уравнения (1.7), так как

$$\frac{\partial W}{\partial x} + \frac{\partial W}{\partial y} = \frac{\pi^2}{2} \sin \frac{\pi}{2} (x+y) \neq C^2.$$

Но эта зависимость позволяет судить о трансформации трубок тока в окрестности угла. Пусть $W \in [0, C)$ -параметр, тогда из (1.13) имеем:

$$y = (2 / \pi) \arcsin(W / (\pi \cdot \sin(\pi x / 2))).$$

Рассмотрев уравнения изолиний W = const из указанной области определения, получим следы трубок тока в окрестности угла на поверхности z = const, показанные на рисунке 2.

Рисунок 2

Случай "большой вязкости":

При $Re \to 0$ четвертое уравнение системы (1.3) примет вид:

$$\Delta w = 0$$

или

$$W_{xx}'' + W_{yy}'' = 0. (1.14)$$

В силу симметрии течения относительно диагонали АО будем искать решение в виде (1.8).

С учетом (1.8) уравнение (1.14) примет вид:

$$X''Y + XY'' = 0$$

или

$$\frac{X''}{X} = -\frac{Y''}{Y} = \lambda^2,$$
(1.15)

где $\lambda^2 = const$.

Граничные условия остаются неизменными.

Выражение (1.15) равносильно системе уравнений:

$$\begin{cases} X'' - \lambda^2 X = 0, \\ Y'' + \lambda^2 Y = 0. \end{cases}$$
(1.16)

Но в силу симметрии решения это возможно только при $\lambda = 0$. Тогда из системы (1.16) следует, что

$$X'' = 0. (1.17)$$

Проинтегрировав выражение (1.17) два раза, получим:

$$X = c_1 x + c_2. (1.18)$$

Но из граничного условия X(0) = 0 следует, что $c_2 = 0$, тогда (1.18) примет вид:

 $X = c_1 x$.

В силу симметрии решения

$$Y = c_1 y$$
.

Пусть $c_1 = \alpha_0$, тогда

$$W = X \cdot Y = \alpha_0^2 xy$$
.

И

$$\alpha_0 \sim \sqrt{C_0} \, ,$$

где $C_0 = C(Re)$ при $Re \rightarrow 0$.

Тогда уравнения изолиний W = const имеют вид:

$$y = \frac{W}{\alpha_0^2 x}$$

Если предположить, что $C_0 \sim C$ и $\alpha_0 \sim \alpha$, то и уравнения изолиний

$$y = \frac{W}{\alpha_0^2 x} \sim \frac{W}{\alpha^2 x}$$

Картина изолиний изображена на рисунке 3.

Как следует из рисунков 2 и 3, картина изолиний W = const двух рассмотренных режимов течения качественно похожи. Кроме того, если вблизи начала координат форма изолиний близка к очертаниям угла, то по мере удаления контуры W = const более напоминают дуги

окружностей. Поэтому можно предполагать, что вблизи центра канала течение стремиться к осесимметричному.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Berman A.S. Laminar flow in channels with porous walls//J. Appl.Phys.-1953.-V.24,N9.
- 2. Taylor G.I. Fluid flow in regions boundet by porous surfaces.-Theoretical and experemental considerations.-1956.-Vol/234.-p.456.
- 3. Свириденков А.А., Ягодкин В.И. О течении в начальных участках в каналах с проницаемыми стенками.//Изв. АН СССР. Механика жидкости и газа.-1976.-№5.-С.43-48.
- Китаева Л.В. Анализ обобщеных решений для каналов мембранных установок. //Отчет о научно-исследовательской работе по теме "Математическое моделирование сложных систем в наукоемких технологиях".-Бийск.-2000.