Электростатическое приближение и его применение к описанию устойчивости многокомпонентных металлических соединений

Баранов М.А., Дятлова И.В., Бумажникова К.Н., Бразовский В.Е. Алтайский государственный технический университет им. И.И. Ползунова

Аннотация. На основе выражения, описывающего взаимодействие атомов с распределенной по закону Гаусса плотностью электронов, получены параметры соответствующих электронных распределений. Оценен радиус действия межатомного потенциала. Возможность описания упругих и пластических свойств металлических систем с использованием построенных потенциалов показана на примере расчета и последующего сравнения с экспериментом значений модулей всестороннего сжатия, энергий образования и атомных конфигураций вакансий в металлах. Рассчитанные равновесные значения параметров упорядоченных сплавов находятся в удовлетворительном соответствии с экспериментом.

Введение

Известно, что упругие, пластические, прочностные свойства кристаллических материалов определяются двумя основными взаимосвязанными взаимодействия И, факторами: законом межатомного 1) слеловательно. типом кристаллической решетки; 2) наличием и химическим составом И распределением дефектов решетки по объему материала. Построение адекватного закона межатомного взаимодействия из первых принципов представляет собой чрезвычайно сложную задачу, решение которой может оказаться зависящим как от исходных предпосылок, так и от метода и последовательности поиска решения [1]. Представление решения подобной задачи оказывается, вообще говоря, неоднозначным. Между тем, возможность описания дефектной структуры материала во многом зависит и от способа представления закона межатомного взаимодействия. В этой связи более успешным по сравнению с первопринципным подходом оказалось применение полуэмпирических парных межатомных потенциалов, т.е. представленных функцией заранее заданного вида [2]. Эта функция должна в наибольшей степени отражать поведение потенциальной энергии взаимодействия атомов, и, как правило, является суперпозицией двух функций, одна из которых описывает притяжение атомов, а другая - их отталкивание. Наиболее часто в задачах моделирования дефектов используются потенциалы, представленные функциями Морза, Леннарда-Джонса, Финиста-Синклейра, Сом и Домингоса и другие [3]. Параметры потенциальных функций определяются на основе известных экспериментальных значений физических характеристик кристалла. Процедура построения подобным образом полуэмпирических потенциалов, связывающих атомы одинакового сорта, Построение оказывается достаточно простой. наборов потенциалов, стабилизирующих решетки бинарных сплавов оказывается более трудоемким.

Для многокомпонентных сплавов решение подобной задачи оказывается почти невозможным. Между тем, очевидно, что межатомный потенциал должен определяться конфигурацией электронных оболочек взаимодействующих атомов, и, следовательно, параметры потенциальных функций должны в той или иной степени зависеть от плотности распределения электронов в оболочках атомов. Поскольку, согласно современным представлениям, роль кулоновских сил в формировании межатомных взаимодействий является превалирующей, то межатомного потенциала базироваться построение должно на законах электростатики. Задачей данной работы является построение сферическисимметричных распределений электронной плотности изолированных атомов, и на этой основе - потенциалов, описывающих взаимодействие атомов различного сорта и их применение к описанию свойств металлов и сплавов.

1. Вид межатомного потенциала.

Поскольку, как отмечено выше, электростатические силы являются преобладающими в формировании межатомных взаимодействий, то построение межатомного потенциала выполним в электростатическом приближении. То есть, будем учитывать влияние только электростатических сил как на этапе построения межатомных потенциалов, так и на этапе их применения. В этом случае несовпадения рассчитанных значений важнейших характеристик кристаллов с соответствующими экспериментальными данными оказываются минимальными. Подбор вида функции распределения электронной плотности представляет собой важнейший творческий этап. Например, в случае симметричного распределения, эта функция должна быть нормируема на конечный заряд. Кроме того, желательно подобрать ее таким образом, чтобы соответствующие интегралы перекрытия, описывающие взаимодействия зарядовых плотностей атомов, находились бы в аналитическом виде. Для этого необходимо, по крайней мере, дополнительное предположение о том, что электронные оболочки атомов не деформируются при их сближении. Построения электронных оболочек на основе законов квантовой механики здесь не предполагается.

Плотность электронов изолированного атома 1 представим в виде суперпозиции плотностей внутренних и внешних оболочек. Взаимодействие атомов друг с другом осуществляется посредством внешних электронных оболочек. Поэтому внутренние электронные оболочки справедливо считать сильно локализованными и, следовательно, компенсирующими часть заряда ядра. В этой связи влияние внутренних оболочек учитываться не будет. Электронную плотность внешних оболочек представим распределенной по сферически симметричному гауссовому закону

$$\rho_1(r) = -q_1 \left(\frac{\alpha_1}{\sqrt{\pi}}\right)^3 * \exp\left(-\alpha_1^2 r^2\right) \tag{1}$$

где $-q_1$ – заряд внешних электронных оболочек, совпадающий по абсолютной величине с нескомпенсированным внутренними оболочками зарядом ядра. Знак

«-» обусловлен тем, что электрона отрицателен. α_l – параметр заряд распределения.

Можно показать [4,5], что потенциал взаимодействия таких **ДВУХ** нейтральных атомов с параметрами (q_1, α_1) и (q_2, α_2) , расположенных на расстоянии r друг от друга представляется функцией

$$p_{12}(r) = \frac{q_1 q_2}{r} \left[1 - erf(\alpha_1 r) - erf(\alpha_2 r) + erf(\alpha r) \right]$$
(2)

где $\alpha = \frac{\alpha_1 \alpha_2}{\sqrt{\alpha_1^2 + \alpha_2^2}}$. В случае одинаковых атомов ($\alpha_1 = \alpha_2, q_1 = q_2$).

$$\varphi_{11}(r) = \frac{q_1^2}{r} \left[1 - 2erf(\alpha_1 r) + erf\left(\frac{\alpha_1 r}{\sqrt{2}}\right) \right]$$
(3)

2. Определение параметров.

Таким образом, параметры α_1 , α_2 и q_1 , q_2 межатомного потенциала (2) описывают распределения электронной плотности каждого ИЗ взаимодействующих атомов. Значения α_1 и q_1 для различных элементов могут быть определены из условий равновесия их кристаллических решеток. однокомпонентного кристалла Внутренняя энергия В расчете на атом представляется только энергией парных межатомных взаимодействий. В расчете на один атом она может быть записана в виде

$$U(a) = \frac{1}{2} \sum_{j} \varphi(r_{j})$$
(4)

где *а* – параметр решетки;

 r_i – расстояние между атомами, находящимися в j-ом и нулевом узлах. Одним из условий устойчивости решетки при экспериментально наблюдаемом значении a_0 ее параметра является равенство нулю первой производной от внутренней энергии.

$$\frac{dU}{da_0} = 0 \tag{5}$$

При этом значение внутренней энергии должно быть равно энергии сублимации $U(a_0) = -E_c < 0$ (6)

Данное уравнение представляет собой второе условие устойчивости решетки. Подставляя в (5) и (6) выражение (4) для внутренней энергии и имея в виду, что $\frac{dr_j}{da} = \frac{r_j}{a}$, получим

$$\sum_{j} \varphi(r_{j})_{a=a_{0}} = -2E_{s}$$
⁽⁷⁾

$$\sum_{j} r_{j} \left(\frac{d\varphi}{dr_{j}} \right)_{a=a_{0}} = 0$$
(8)

Для того, чтобы определить значения параметров α_l и q_l необходимо использовать полученное выше выражение (19) для межатомного потенциала φ , связывающего одинаковые атомы. Производная от потенциала имеет вид

$$r\frac{d\varphi}{dr} = \frac{2q_1^2}{r} \left[2erf(\alpha_1 r) - erf\left(\frac{\alpha_1 r}{\sqrt{2}}\right) - 1 \right] + q_1^2 \frac{2\alpha_1}{\sqrt{\pi}} \left[\frac{1}{\sqrt{2}} \exp\left(-\frac{\alpha_1^2 r^2}{2}\right) - 2\exp\left(-\alpha_1^2 r^2\right) \right]$$
(9)

Введем обозначения решеточных сумм:

$$S_{0}(\alpha_{1}a_{0}) = \sum_{j} \frac{a_{0}}{r_{j}} \left[1 + erf\left(\frac{\alpha_{1}r_{j}}{\sqrt{2}}\right) - 2erf\left(\alpha_{1}r_{j}\right) \right]$$
(10)

$$S_{1}(\alpha_{1}a_{0}) = \frac{2\alpha_{1}a_{0}}{\sqrt{\pi}}\sum_{j} \left[\frac{1}{\sqrt{2}}\exp\left(-\frac{\alpha_{1}^{2}r^{2}}{2}\right) - 2\exp\left(-\alpha_{1}^{2}r^{2}\right)\right]$$
(11)

Величины S_0 и S_1 являются безразмерными и зависят от безразмерного параметра $\alpha_1 a_0$. Действительно, произведения $\alpha_1 r_j$, фигурирующие в S_0 и S_1 можно представить в виде произведений безразмерных величин ($\alpha_1 a_0$) и (r_j/a_0)

$$\boldsymbol{\alpha}_{1}\boldsymbol{r}_{j} = (\boldsymbol{\alpha}_{1}\boldsymbol{a}_{0})\frac{\boldsymbol{r}_{j}}{\boldsymbol{a}_{0}}$$
(12)

Поскольку r_j/a_0 – длины векторов связи в решетке с параметром равным единице, то суммирование в (10) и (11) необходимо выполнить по единичной решетке. С учетом сделанных выше обозначений уравнения (8) и (9) перепишутся в виде

$$S_{1}(\alpha_{1}a_{0}) - S_{0}(\alpha_{1}a_{0}) = 0$$
(13)

$$q_{1}^{2} = -\frac{2E_{s}a_{0}}{S_{0}(\alpha_{1}a_{0})}$$
(14)

Для того, чтобы заряд q_1 оболочки был представлен в элементарных зарядах - e, при условии, что энергия сублимации *Es* задана в электронвольтах, а параметр решетки a_0 - в ангстремах, необходимо учесть соотношение

$$\left(\frac{e^2}{\frac{0}{A}}\right) = 14,43B.$$
(15)

Из уравнения (13) легко найти величину $\alpha_1 a_0$ при заданном числе N координационных сфер. Зависимость параметра ($\alpha_1 a_0$), при котором достигается равновесное состояние решетки от числа учитываемых координационных сфер приведена на рисунке 1. Из графика видно, что при бесконечном увеличении числа координационных сфер зависимость ($\alpha_1 a_0$)(N) является непрерывно убывающей. Из соотношения (14) видно, что заряд q_1 внешней оболочки также должен зависеть от числа координационных сфер. Данная зависимость для ГЦК и ОЦК решетки приводится на рисунке 2.

Рис. 1. Зависимость ($\alpha_1 a_0$) от числа координационных сфер для ГЦК и ОЦК решетки.

Рис.2. Зависимость заряда *q*₁ внешней оболочки для железа и меди от числа координационных сфер.

Наблюдаемый на графике минимум для меди как и для других ГЦК металлов объясняется плотной упаковкой ГЦК структуры по сравнению с «рыхлой» ОЦК.

Очевидно, что парные взаимодействия атомов не могут распространяться на слишком большое число координационных сфер, которые рассматривались при построении зависимостей $\alpha_1 a_0(N)$ и $q_1(N)$. Формально это означало бы, что «внутри» оболочки каждого атома находится множество других атомов. В этой связи необходимо, как это делается зачастую [2], ограничиваться вполне определенным числом координационных сфер. При этом следует иметь ввиду, что то же самое число сфер следует учитывать и при описании свойств кристаллов. Число учитываемых координационных сфер, вообще говоря, не определено, однако его необходимо выбрать малым и таким, чтобы оно представляло первый квазипериод рассматриваемой решетки. Для ГЦК решетки такой период просматривается до пятой сферы, поскольку $z_5=24$, $z_6=8$, и для ОЦК

решетки - также для пятой, так как
$$\left(\frac{r_5}{a_0}\right)^2 = 3$$
, а $\left(\frac{r_6}{a_0}\right)^2 = 4$. Для ГПУ решетки

первый квазипериод охватывает первые восемь координационных сфер, что соответствует учету пятидесяти шести ближайших связей. Поскольку величина безразмерного параметра $\alpha_1 a_0$ определяется только типом кристаллической решетки и соотношением геометрических размеров элементарной ячейки, то она не должна зависеть от конкретного элемента. Для всех ОЦК и ГЦК элементов произведение $\alpha_1 a_0$ с учетом связей до пяти координационных сфер равно соответственно 1,1332 и 1,3458. Для гексагональных металлов значение $\alpha_1 a_0$ зависит от осевого соотношения $\eta = \frac{c_0}{a_0}$. Рассчитанные значения α_1 и q_1 для большиетра. ОЦК – ЦК и ГЦК моталнов зависито для расиета.

большинства ОЦК, ГЦК и ГПУ металлов, а также используемые для расчета исходные экспериментальные данные приведены в таблице 1.

Таблица 1.

	Исходны	е экспери	Рассчитанные			
Эломонт		[6,	значения			
Элемент	Тип	0	EpD	n	⁰	a /a
	решетки	$a_{0, A}$	_с , эр	١Į	α_1, A^{-1}	q ₁ /e
1	2	3	4	5	6	7
Li литий	ОЦК	3,509	1,650	-	0,3229	0,7208
Na натрий	ОЦК	4,291	1,130	-	0,2641	0,6596
К калий	ОЦК	5,247	0,941	-	0,2160	0,6656
Rb рубидий	ОЦК	5,700	0,858	-	0,1988	0,6625
Cs цезий	ОЦК	6,140	0,827	-	0,1846	0,6750
V ванадий	ОЦК	3,028	5,300	-	0,3742	1,2000

Исходные экспериментальные данные и рассчитанные значения параметров α_l и q_l для некоторых элементов с ограниченным числом связей.

Продолжение таблицы 1.

1	2	3	4	5	6	7
Сг хром	ОЦК	2,885	4,100	-	0,3928	1,0302
Fe железо	ОЦК	2,866	4,290	-	0,3954	1,0504
Nb ниобий	ОЦК	3,301	7,470	-	0,3433	1,4875
Мо молибден	ОЦК	3,147	6,810	-	0,3601	1,3867
Ва барий	ОЦК	5,025	1,860	-	0,2255	0,9158
W вольфрам	ОЦК	3,165	8,660	-	0,3580	1,5683
Еи европий	ОЦК	4,606	1,800	-	0,2460	0,8625
Та тантал	ОЦК	3,805	8,089	-	0,2978	1,6619
Ра протактиний	ОЦК	3,925	5,460	-	0,2887	1,3867
Nе неон	ГЦК	4,430	0,020	-	0,3038	0,0768
Ar аргон	ГЦК	5,260	0,080	-	0,2558	0,1674
Kr криптон	ГЦК	5,720	0,116	-	0,2353	0,2102
Al алюминий	ГЦК	4,049	3,340	-	0,3324	0,9491
Са кальций	ГЦК	5,582	1,825	-	0,2411	0,8237
Ni никель	ГЦК	3,524	4,435	-	0,3819	1,0203
Си медь	ГЦК	3,615	3,500	-	0,3723	0,9180
Rh родий	ГЦК	3,803	5,752	-	0,3539	1,2070
Pd палладий	ГЦК	3,889	3,936	-	0,3460	1,0097
Ад серебро	ГЦК	4,086	2,960	-	0,3294	0,8975
Ir иридий	ГЦК	3,839	6,930	-	0,3505	1,3312
Рt платина	ГЦК	3,923	5,852	-	0,3430	1,2366
Аи золото	ГЦК	4,079	3,780	-	0,3299	1,0134
La лантан	ГЦК	5,301	4,491	-	0,2539	1,2592
Се церий	ГЦК	5,161	4,770	-	0,2608	1,2805
Pr празеодим	ГЦК	5,160	3,900	-	0,2608	1,1577
Үb иттербий	ГЦК	5,486	1,600	-	0,2453	0,7646
Рь свинец	ГЦК	4,950	2,040	-	0,2719	0,8201
Th торий	ГЦК	5,084	5,926	-	0,2647	1,4166
Ве бериллий	ГПУ	2,283	3,330	1,5799	0,4514	0,8770
Hf гафний	ГПУ	3,1952	6,350	1,583	0,3224	1,4332
Cd кадмий	ГПУ	2,97311	1,160	1,8859	0,3282	0,6137
Со кобальт	ГПУ	2,514	4,387	1,63286	0,4056	1,0624
Mg магний	ГПУ	3,2084	1,530	1,6240	0,3183	0,7081
Re рений	ГПУ	2,7609	8,100	1,6148	0,3706	1,5098
Ru рутений	ГПУ	2,706	6,615	1,5824	0,3806	1,3463
Sc скандий	ГПУ	3,309	3,930	1,5935	0,3106	1,1487
Tl таллий	ГПУ	3,4564	1,870	1,6002	0,2969	0,8104
Ті титан	ГПУ	2,95	4,855	1,5885	0,3487	1,2048
Zn цинк	ГПУ	2,665	1,35	1,8563	0,3678	0,6242
Zr цирконий	ГПУ	3,232	6,316	1,5925	0,3181	1,439

Вид потенциалов межатомного взаимодействия в системе Fe-Al приведен на рис. 3.

Рис. 3. Зависимость потенциалов, найденных из соотношения (2), данных таблицы 1 и описывающих взаимодействия атомов в системе Fe-Al.

3. Применение к металлам.

3.1 Модуль всестороннего сжатия.

Одним из критериев применимости построенных потенциалов для описания упругих свойств кристаллов может быть соответствие между рассчитанными и экспериментальными значениями модулей всестороннего сжатия *В* металлов. Величина модуля всестороннего сжатия в соответствии с ее определением [7] может быть найдена из соотношения

$$B = V_0 \frac{d^2 U}{dV_0^2}$$
(16)

где U – внутренняя энергия кристалла объемом V_0 . Если в качестве V_0 выбрать атомный объем, то внутренняя энергия представится в виде (4). В (16) перейдем от производных U по объему к производным по параметру решетки

$$\frac{d^2 U}{dV_0} = \frac{d^2 U}{d\alpha_0^2} \left(\frac{d\alpha}{dV_0}\right)^2$$
(17)

При выводе (17) учтено соотношение (5). Атомный объем, при сохранении пропорций в размерах элементарной ячейки, может быть выражен через параметр решетки

$$V_0 = ka_0^{3}$$
(18)

где к – коэффициент, зависящий от кристаллической структуры

$$\frac{dV_0}{da_0} = 3ka_0^2$$
или $\frac{da_0}{dV_0} = \frac{1}{3ka_0^2}$ (19)

Для определения второй производной от внутренней энергии по параметру решетки в условиях равновесия, необходимо воспользоваться исходным соотношением (4) и учесть (9). Тогда

$$\frac{dU}{da_0} = \frac{1}{2a_0} \sum_j r_j \frac{\partial \varphi}{\partial r_j}$$
(20)

$$\frac{d^{2}U}{da_{0}^{2}} = \frac{1}{2a_{0}^{2}} \sum_{j} r_{j}^{2} \frac{\partial^{2} \varphi}{\partial r_{j}^{2}}$$
(21)

объединяя далее соотношения (16), (17), (19) и (21), получим

$$B = \frac{1}{18V_0} \sum_{j} \left(r_j^2 \frac{\partial^2 \varphi}{\partial r_j^2} \right)$$
(22)

Соотношение (22) применимо в общем случае, поскольку при его выводе не конкретизировался тип кристаллической решетки и вид межатомного потенциала. Рассчитанные и экспериментальные значения модулей всестороннего сжатия металлов приведены в таблице 2.

Таблица 2.

Экспериментальные и рассчитанные значения модулей упругости *B* и энергии образования вакансий E_{ν}^{f} в металлах.

Элемент	Тип решетки	B, $\partial B / \overset{0}{A}^{3}$ pacyet	В, эВ/ Å ³ эксперим.[7]	Е _v ^f , эВ расчет	Е _v ^f , эВ [9] эксперим.
1	2	3	4	5	6
Li литий	ОЦК	0,1163	0,0724	0,729	0,34
Na натрий	ОЦК	0,0436	0,0424	0,499	0,42
К калий	ОЦК	0,0198	0,0200	0,416	0,39
Rb рубидий	ОЦК	0,0141	0,0193	0,379	0,15
Сs цезий	ОЦК	0,0109	0,0125	0,366	0,14
V ванадий	ОЦК	0,5816	1,0105	2,343	2,1
Сг хром	ОЦК	0,5202	1,1865	1,812	1,7 - 2,27
Fe железо	ОЦК	0,5552	1,0504	1,896	1,4-1,7
Nb ниобий	ОЦК	0,6327	1,0623	3,302	2,0 - 3,0
Мо молибден	ОЦК	0,6656	1,7008	3,01	3,0-3,2

Продолжение таблицы 2.

1	2	2	1	5	6
l Do Sonuŭ		3	4	0.000	0
Ва Оарии	ОЦК	0,0447	0,0043	0,822	-
w вольфрам	ОЦК	0,8321	2,0172	3,828	3,3 - 3,0
Ец европии	ОЦК	0,0561	0,0917	0,796	-
Та тантал	ОЦК	0,44/3	1,2483	3,576	2,2 - 2,9
Ра протактиний	ОЦК	0,2751	0,4744	2,413	-
Ne неон	ГЦК	0,0014	0,0062	0,009	-
Ar аргон	ГЦК	0,0033	0,0100	0,035	-
Kr криптон	ГЦК	0,0037	0,0112	0,05	-
Al алюминий	ГЦК	0,2997	0,4506	0,441	0,67
Са кальций	ГЦК	0,0625	0,0948	0,787	-
Ni никель	ГЦК	0,6037	1,1609	1,915	1,80
Си медь	ГЦК	0,4413	0,8551	1,51	1,27
Rh родий	ГЦК	0,6229	1,6877	2,481	-
Pd палладий	ГЦК	0,3986	1,1285	1,698	-
Ад серебро	ГЦК	0,2585	0,6285	1,277	1,10
Ir иридий	ГЦК	0,7296	2,2157	2,989	-
Рt платина	ГЦК	0,5774	1,7370	2,524	1,51
Аи золото	ГЦК	0,3318	1,0810	1,63	0,95
Lа лантан	ГЦК	0,1796	0,1567	1,937	-
Се церий	ГЦК	0,2067	0,1492	2,057	-
Pr празеодим	ГЦК	0,1691	0,1910	1,682	-
Yb иттербий	ГЦК	0,0577	0,0830	0,69	-
Рь свинец	ГЦК	0,1002	0,2684	0,88	0,56
Th торий	ГЦК	0,2686	0,3389	2,556	-
Ве бериллий	ГПУ	0,6211	0,6261	1,457	-
Hf гафний	ГПУ	0,4312	0,6804	2,775	-
Cd кадмий	ГПУ	0,0817	0,2915	0,429	0,40 - 0,42
Со кобальт	ГПУ	0,5922	1,1948	1,921	1,91
Mg магний	ГПУ	0,0999	0,2210	0,681	0,58 - 0,89
Re рений	ГПУ	0,8351	2,3221	3,549	-
Ru рутений	ГПУ	0,7390	2,0025	2,892	-
Sc скандий	ГПУ	0,2386	0,2715	1,720	-
Tl таллий	ГПУ	0,0992	0,2241	0,832	-
Ті титан	ГПУ	0,4174	0,6561	2,125	-
Zn цинк	ГПУ	0,1341	0,3733	0,498	0,45 - 0.53
Zr цирконий	ГПУ	0,4118	0,52	2,761	-

Почти для всех металлов, кроме лития, натрия, церия и лантана $B_{pacu} < B_{3\kappa cn}$. Наилучшее совпадение модулей наблюдается для щелочных металлов. Скорее всего это объясняется тем, что представленная модель более всего соответствует металлической связи. Действительно, суперпозиция гауссовых распределений, центрированных на узлах решетки, примерно соответствует плотности равномерно распределенного электронного газа, как это и предполагается в классической модели. Для переходных металлов отклонения более значительны – примерно вдвое. Причем с увеличением атомного номера различие в модулях возрастает, что свидетельствует о большей неоднородности внешних оболочек переходных металлов и необходимости учета влияния внутренних оболочек.

3.2 Вакансии.

Другой важной, надежно определяемой экспериментально характеристикой металла является энергия образования вакансии. Значения этого параметра для большинства металлов определены с относительной точностью в 5-10% [8], поэтому они также могут рассматриваться в качестве критерия адекватности построенных потенциалов.

Энергия образования вакансий находилась из соотношения

$$E_{\nu}^{f} = E_{1} - E_{0} + \frac{E_{s}}{2}$$
(23)

где E_1 – внутренняя энергия блока кристалла с вакансией, E_0 – внутренняя энергия такого же по размерам и числу атомов блока идеального кристалла. Половина энергии сублимации E_s обусловлена восстановлением половины межатомных связей при переносе атома из внутренних областей блока в стандартное положение на поверхности.

Для определения *E*₁ в блоке кристалла с вакансией в его центре выделялись внутренняя и внешняя части. Атомы внешней части блока закреплялись, а атомы внутренней части блока, содержащей вакансию, перемещались в направлении действующих на них сил вплоть до достижения равновесной конфигурации. В качестве стартовых положений атомов рассматривались ИХ положения, занимаемые в идеальной решетке. Рассчитанные значения энергии образования вакансий E_v^f и соответствующие им опубликованные экспериментальные данные [9] представлены в таблице 2. Как видно из таблицы, для большинства металлов, в E_{v}^{f} том числе И переходных, рассчитанные значения попадают В наблюдаемые или экспериментально пределы находятся вблизи них. Соответствие рассчитанных и экспериментальных значений энергии образования простейшего типа дефекта решетки, свидетельствует вакансий, как 0 применимости построенных потенциалов к описанию дефектной структуры кристаллов и, следовательно, их пластических свойств.

Атомные конфигурации, возникающие вблизи вакансии во всех ГЦК металлах, как и во всех ОЦК металлах, найденные с использованием построенных потенциалов оказываются подобными. Для ГПУ металлов такие конфигурации зависят от осевого соотношения η. Рассчитанные атомные конфигурации в ОЦК, ГЦК и ГПУ металлах приведены на рис. 4–6. Стрелками в увеличенном масштабе изображены проекции на плоскость чертежа векторов смещений атомов из их стартовых положений.

Рис. 4. Атомная конфигурация, возникающая вблизи вакансии в железе. Масштаб атомных смещений 15:1.

Рис. 5 Атомная конфигурация, возникающая вблизи вакансии в меди. Масштаб атомных смещений 15:1.

Рис. 6 Атомная конфигурация, возникающая вблизи вакансии в кобальте. а) – проекция на базисную плоскость; б) – проекция на призматическую плоскость. Масштаб атомных смещений 15:1.

4. Равновесные характеристики упорядоченных сплавов.

Внутренняя энергия упорядоченного сплава в расчете на одну структурную единицу находится из соотношения

$$U_{cnn}(a) = \frac{1}{2} \sum_{m} \sum_{n} \varphi_{mn}(r_{mn})$$
(24)

Индекс *m* здесь обозначает номер и сорт атома в структурной единице рассматриваемой сверхструктуры. Например, Fe1, Fe2, Fe3, Al1 в структурной единице Fe₃Al соответствующего сплава со сверхструктурой D0₃. *n* – номер и сорт атома из окружения *m*-го в пределах рассматриваемого числа координационных сфер. r_{mn} – межатомное расстояние, пропорциональное параметру решетки *a* сплава. Равновесное значение *a*₀ параметра решетки определялось из условия минимума внутренней энергии

$$\frac{dU_{cnn}}{da_0} = 0 \tag{25}$$

В качестве энергии связи сплава E_{ce} принималось значение его внутренней энергии, найденное при равновесном параметре решетки.

$$E_{c6} = U_{cnn}(a_0) \tag{26}$$

Сравнение найденных из (26) значений энергии связи бинарных сплавов проводилось с величиной *H*, которую справедливо было бы назвать «собственным вкладом» в энергию связи.

$$H = n_A E_{sA} + n_B E_{sB} \tag{27}$$

где n_A и n_B – количества атомов сорта A и B в структурной единице элемента. Экспериментальное значение энергии связи отличается от *H* на величину теплоты смешения ΔH .

$$E_{ce,aven} = H + \Delta H \tag{28}$$

Модуль всестороннего сжатия сплава находился из соотношения

$$B_{cnn} = \frac{1}{18V_{0 cnn}} \sum_{m} \sum_{n} \left(r_{mn}^{2} \frac{\partial^{2} \varphi_{mn}}{\partial r_{mn}^{2}} \right)$$
(29)

которое получается аналогично (22). При этом под V_{о спл.} необходимо понимать объем, занимаемый одной структурной единицей.

Рассчитанные из соотношений (25) – (29) равновесные значения параметров решеток, энергий связи и модулей всестороннего сжатия и соответствующие им экспериментальные значения [6,7,10-13] сплавов, упорядоченных в сверхструктуры В2, D0₃, L1₂ приведены в таблице 3. Наибольший интерес, конечно же, вызывает сравнение рассчитанных и экспериментальных значений параметров решетки этих сплавов, и не только потому, что данная характеристика сравнительно легко и точно измеряема [6], а и потому, что дальнейшее решение задач моделирования дефектов, описания пластических свойств сплавов с применением построенных потенциалов возможно только при достаточно

хорошем совпадении a_{0pacy} и a_{0scn} . При этом относительная невязка δ не должна превышать 3 %

$$\delta = \frac{|a_{0\,pacy} - a_{0\,ykcn}|}{a_{0\,ykcn}} * 100\% < 3\%$$
(30)

Таблица 3.

Равновесные рассчитанные и экспериментальные характеристики некоторых бинарных сплавов со сверхструктурами B2, D0₃, L1₂.

Сверх-	<i>C</i>	$a_0 \overset{0}{A}$	$\mathbf{a}_{0} \overset{0}{\mathcal{A}}$	Е _{связи} , эВ		B $\partial B / A^3$
структура	Сплав	пасчет	эксперим	расчет	Н, Э <i>В</i>	расчет
1	2	3	4	5	6	7
	AgCd	3.436	3.333	3.721	4.120	0.1406
	AgCe	3.993	3.740	6.511	7.730	0.1520
	AgLa	4.066	3.768	6.216	4.451	0.1368
	AgLi	3,468	3,174	4,210	4,610	0,1542
	AgMg	3,490	3,287	4,114	4,490	0,1480
	AgPr	3,975	3,735-3,739	5,780	6,860	0,1366
	AgSc	3,555	3,412	6,580	6,890	0,2228
	AgZn	3,290	3,162	3,937	4,310	0,1674
	AlCo	3,099	2,850	7,028	7,727	0,3549
	AlFe	3,135	2,900	6,921	7,630	0,3387
	AlIr	3,300	2,977	8,763	10,270	0,3740
	AlLa	4,044	3,790	6,504	7,831	0,1452
	AlNi	3,188	2,887	6,672	7,775	0,3116
	AlPd	3,340	3,030	6,390	7,276	0,2611
	AlPr	3,953	3,820	6,067	7,240	0,1456
B2	AlRe	3,184	2,880	10,460	11,440	0,4997
	AlRh	3,291	2,990	7,839	9,092	0,3362
	AlRu	3,155	3,030	9,127	9,955	0,4451
	AuCd	3,426	3,330	4,341	4,940	0,1663
	AuCs	4,702	4,263	2,473	4,607	0,0332
	AuMg	3,478	3,260	4,751	5,310	0,1732
	AuPr	3,949	3,680	6,434	7,680	0,1551
	AuSc	3,549	3,370	7,335	7,710	0,2494
	AuZn	3,292	3,196	4,586	5,130	0,1953
	BaZn	4,359	4,090	2,706	3,210	0,048
	BeCo	2,668	2,611	7,833	7,717	0,6240
	BeCu	2,797	2,701	6,256	6,830	0,4280
	BeNi	2,766	2,600	7,153	7,765	0,5076
	BePd	2,947	2,819	6,448	7,266	0,3720
	CdCe	4,045	3,860	5,017	5,930	0,1141
	CdLa	4,128	3,908	4,778	5,651	0,1018

Продолжение таблицы 3.

1	2	3	4	5	6	7
	CdPr	4,035	3,828	4,363	5,060	0,0996
	CdSc	3,557	3,513	4,950	5,090	0,1691
	CeMg	4,061	3,900	5,469	6,300	0,1217
	CeZn	3,950	3,700	5,068	6,120	0,1224
	CoFe	2,830	2,850	8,785	8,677	0,5900
	CoSc	3,269	3,145	7,944	8,317	0,3359
	CoTi	3,045	2,987-2,994	9,292	9,242	0,4954
	CoZr	3,257	3,200	10,461	10,703	0,4490
	CuPd	3,167	2,994	6,524	7,436	0,3119
	CuSc	3,392	3,240-3,256	6,922	7,430	0,2656
	CuZn	3,050	2,940	4,362	4,850	0,2358
	EuZn	4,046	3,808	2,813	3,150	0,0618
	FeRh	3,050	2,987	9,263	10,042	0,4939
	FeTi	3,077	2,976	9,144	9,145	0,4740
	HfRh	3,374	3,248	11,489	12,102	0,4532
	IrSc	3,430	3,206	9,850	10,860	0,3708
	LaMg	4,141	3,970	5,220	6,021	0,1100
	LaZn	4,035	3,750	4,806	5,841	0,1087
B2	LiPb	3,874	3,520	3,359	3,690	0,0867
	MgPr	4,051	3,888	4,791	5,430	0,1080
	NiSc	3,347	3,150-3,170	7,637	8,365	0,3041
	NiZn	2,997	2,910	5,048	5,785	0,2892
	PdSc	3,478	3,283	7,425	7,866	0,2670
	PrZn	3,933	3,670	4,405	5,250	0,1072
	PtSc	3,474	3,270	9,047	9,782	0,3278
	PtZr	3,444	3,310	11,571	12,168	0,4299
	RhSc	3,427	3,206	8,896	9,682	0,3345
	PbMg	3,898	3,120	3,297	3,570	0,0837
	NaAl	3,784	3,730	3,614	4,470	0,1012
	RhTi	3,226	3,110	10,046	10,607	0,4558
	RhZr	3,401	3,260	11,431	12,068	0,4395
	RuSc	3,302	3,203	10,119	10,545	0,4230
	RuTi	3,108	3,060	11,581	11,470	0,5867
	RuV	3,001	3,000	12,038	11,915	0,6792
	RuZr	3,294	2,860	12,848	12,935	0,5393
	TeTh	4,427	3,827	6,928	7,926	0,1229
	TiZn	3,170	3,029	5,993	6,205	0,2898
D0	AlCu ₃	6,282	5,900	12,081	13,840	0,2955
$D0_3$	AlFe ₃	5,998	5,780	15.321	16.210	0.4285

Продолжение таблицы 3.

1	2	3	4	5	6	7
	CeMg ₃	7,686	7,420	8,421	9,360	0,1121
D0.	LaMg ₃	7,778	7,470	8,168	9,081	0,1042
$D0_3$	Li ₃ Pb	7,398	6,687	6,606	6,990	0,0982
	Mg ₃ Pr	7,666	7,390	7,796	8,490	0,1042
	Cd ₃ Ce	7,590	7,228	7,205	8,250	0,0995
	Cd ₃ Pr	7,570	7,200	6,615	4,380	0,0917
	AlCe ₃	4,959	4,985-5,013	17,135	17,650	0,2086
	AlLa ₃	5,076	5,093	16,220	16,813	0,1841
	AlNi ₃	3,656	3,560	16,339	16,645	0,4947
	AlPr ₃	4,947	4,950-5,007	14,579	15,040	0,1784
	AlPt ₃	3,947	3,876	20,633	20,896	0,5007
	Al ₃ Sc	4,130	4,100	14,514	13,950	0,3066
	AlZr ₃	4,190	4,372	24,917	22,288	0,5062
	CaPb ₃	5,116	4,901	7,852	7,945	0,0868
	CePb ₃	5,005	4,874	10,556	10,890	0,1261
	CoPt ₃	3,798	3,831	22,316	21,940	0,6038
	Co ₃ Ti	3,474	3,604-3,613	20,639	18,016	0,7262
	Cu ₃ Pd	3,690	3,650	14,385	14,436	0,4255
	Cu ₃ Au	3,745	3,750	14,139	14,280	0,3986
	Cu ₃ Pt	3,707	3,68	16,151	16,352	0,4719
	EuPb ₃	5,090	4,918	8,104	7,920	0,0912
	FePd ₃	3,773	3,848-3,851	16,403	16,098	0,4528
T 1.	HfIr ₃	3,931	3,935	28,046	27,140	0,6860
L12	HfRh ₃	3,910	3,911	24,478	23,606	0,6082
	Ir ₃ Ta	4,048	3,861-3,889	29,401	28,879	0,0534
	Ir ₃ Ti	3,844	3,845-3,850	26,391	25,645	0,6923
	Ir ₃ V	3,784	3,812	26,728	26,090	0,7338
	Ir ₃ Zr	3,947	3,943	27,959	27,106	0,6748
	LaPb ₃	5,054	4,903	10,333	10,611	0,1196
	LaPd ₃	4,346	4,235	15,171	16,299	0,2642
	NbRh ₃	3,834	3,865	25,576	24,726	0,6762
	NbZn ₃	3,721	3,934	11,683	11,520	0,3460
	PbPd ₃	4,137	4,021	12,985	13,848	0,2679
	Pb ₃ Pr	5,008	4,867	9,846	10,020	0,1171
	PbPt ₃	4,122	4,053	18,095	19,592	0,3802
	Pb ₃ Th	4,973	4,856	11,434	12,046	0,1399
	Pb ₃ Yb	5,083	4,867	7,632	7,720	0,0863
	Pd ₃ Sc	4,015	3,981	16,250	15,738	0,3722
	Pt ₃ Sc	4,025	3,958	21,886	21,486	0,4983
	Pt ₃ Ti	3,908	3,916	23,198	22,411	0,5789

1	2	3	4	5	6	7
	Pt ₃ V	3,847	3,870	23,445	22,856	0,6121
	Pt ₃ Zn	3,869	3,890	18,343	18,906	0,4756
	Rh ₃ Sc	3,938	3,900	21,477	21,256	0,5206
	Rh ₃ Ta	4,034	3,860	25,794	25,345	0,5788
$L1_2$	Rh ₃ Th	4,200	4,139	21,748	23,182	0,4217
	Rh ₃ Ti	3,817	3,822	22,899	22,110	0,6132
	Rh ₃ V	3,753	3,795	23,213	22,556	0,6535
	Rh ₃ Zr	3,927	3,927	24,399	23,572	0,5976
	TiZn ₃	3,708	3,932	9,716	8,905	0,2876

Продолжение таблицы 3.

Как видно из таблицы 3, почти для всех соединений со сверхструктурой B2 рассчитанные значения a_0 оказываются завышенными. Исключение составляет FeCo. В сверхструктуре L1₂ возможны отклонения от эксперимента как в большую так и меньшую сторону. Данное обстоятельство объясняется тем, что сверхструктура L1₂ является плотноупакованной и по своему составу (75/25) оказывается ближе к металлу (100/0), чем B2 (50/50). Максимальная относительная невязка параметров решеток в B2 составляет 10%. В то же время для сплавов BeCo, CdSc, CoFe, CoZr, NaAl, RuTi, RuV совпадение оказывается хорошим (δ ~1%). В сверхструктуре D0₃ относительная невязка в среднем не столь велика как в B2, хотя увеличение параметров решеток здесь также имеет место. В сплавах со сверхструктурой L1₂ расчет показывает гораздо большую долю близких к экспериментальным значений параметров решеток. Здесь легче перечислить сплавы с плохим совпадением a_0 : AlZr₃, CaPb₃, Ir₃Ta, PbPd₃, Ru₃Ta.

Энергия связи сплава, как отмечен выше, должна быть больше (по модулю) для рассматриваемого соединения. Между тем, в таблице 3 прослеживается преимущественно обратное неравенство. В основном это наблюдается для сплавов со сверхструктурой B2, хотя и здесь есть «исключения» – ВеСо, FeCo, TiCo, RuTi, RuV. В сверхструктуре D0₃ «правильного» соотношения E_{ce} и *H* не наблюдается. В то же время в сплавах сверхструктуры L1₂ имеет место гораздо больший, по сравнению с B2, процент таких, где соблюдается «правильный» тепловой баланс, то есть, обеспечивается выделение избыточной, пусть даже не совпадающей с экспериментально наблюдаемой теплоты смешения. Характерно, что рассчитанные значения параметров решеток таких сплавов имеют тенденцию к уменьшению и оказываются близкими к экспериментальным.

Что касается упругих характеристик металлических соединений, то соответствующие экспериментальные данные в литературе почти не приводятся, поэтому сравнение величин модулей всестороннего сжатия сплавов с экспериментом не проводилось. Можно лишь отметить, что B_{pacy} по порядку величины оказываются сравнимыми с соответствующими значениями для металлов (табл. 2), которые, в свою очередь, являются заниженными.

Анализ таблиц 2 и 3 показывает, что предложенная модель применима к описанию упругих и пластических свойств металлов, сплавов с плотноупакованной решеткой узлов, а также многих соединений на основе ОЦК

решетки. Однако, данная модель не может претендовать на универсальность и требует дальнейшей доработки, которая связана, прежде всего, с представлением электронных распределений другими, в большей степени соответствующими природе функциями. Действительно, представление распределений внешних оболочек в виде сферически симметричных функций Гаусса оказывается не вполне корректным, потому что максимум электронной плотности оказывается расположенным в центре атома, то есть на ядре. Соответствующая доработка проводится.

Таким образом, в работе предложена идеология описания межатомных взаимодействий, разработана модель и получен аналитический вид межатомного потенциала для разносортных атомов, определены параметры электронных распределений, показана возможность применения построенных потенциалов к описанию упругих и пластических свойств металлических соединений. Рассчитаны равновесные характеристики сплавов различных сверхструктур.

Литература.

1. Дж.Слэтер. Методы самосогласованного поля для молекул и твердых тел. - М.: Мир. - 1978. – 347 с.

2. Дефекты в кристаллах и их моделирование на ЭВМ/ сб. статей под ред. А.Н. Орлова. – Ленинград. – Наука. – 1980. – 213 с.

3. В.Экштайн. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. – М.: Мир. – 1995. – 319 с.

4. М.А. Баранов, М.Д. Старостенков. Расчет равновесных свойств металлических систем в квазиклассическом приближении. – Деп. в ВИНИТИ. – 1984. - № 3712-84. – 31с.

5. М.А.Баранов, М.Д.Старостенков. Квазиэлектростатический подход к описанию металлических систем / Препринт. – АлтГТУ. – Барнаул. – 1998. – 40 с.

6. С.С.Горелик, Л.Н.Расторгуев, Ю.А.Скаков. Рентгенографический и электроннооптический анализ. Приложения. М.: Металлургия. – 1970. – 107 с.

7. Ч. Киттель. Введение в физику твердого тела. М.: Наука. – 1978. – 792 с.

8. Г. Шульце. Металлофизика. М.: Мир. – 1971. – 503 с.

9. А.Н.Орлов, Ю.В.Трушин. Энергии точечных дефектов. М.: Энергоатомиздат. – 1983. – 82 с.

10. К.Дж. Смитлз. Металлы. Справочник. М.: Металлургия. – 1980. – 447 с.

11. А.Е. Вол. Строение и свойства двойных металлических систем. Справочное руководство в 4-х т. М.: Физматгиз. – 1962.

12. М.Хансен, К.Андреко. Структурные свойства двойных сплавов. Справочник в 2-х т. М.: Металлургия. – 1962.

13. Р.П.Эллиот. Структуры двойных сплавов. Справочник под ред. М.И. Новикова и И.Л. Рыельберга в 2-х т. М.: Металлургия. – 1970.

14. М.А.Баранов, Е.В.Черных, М.Д.Старостенков, А.И.Потекаев. Электростатический метод построения потенциалов межатомного взаимодействия в многокомпонентных сплавах // Изв. ВУЗов. Физика. – 2001. - № 4. – с. 61-67.

Работа выполнена при поддержке гранта PD02-1.2-31